NVIDIA-Certified Associate

Multimodal Generative AI

(NCA-GENM)

关于认证

NVIDIA-Certified Associate: Generative AI Multimodal (NCA-GENM) 认证,用于验证设计、实现和管理 AI 系统所需的基本技能,这些 AI 系统可以合成和解释文本、图像和音频模态的数据。

请在预约考试之前仔细阅读 NVIDIA 考试规则

如有问题,请将详情发邮件至 dlichina@nvidia.com

考试概况

考试时长: 1 小时

考试费用: 960 元

认证等级: Associate

认证主题:Multimodal Generative AI

题目数量: 50 道选择题

预备知识:对生成式 AI 的基本理解

考试语言:中文

认证有效期:认证自颁发之日起两年内有效。可以通过重新参加考试保持认证资质。

NVIDIA 认证证书:通过考试后,您将获得数字徽章和电子证书(其中包含认证主题和级别,并可在线验证核实),并将被收录于 NVIDIA 认证名录中。

选择考试

考试涵盖主题

  • 核心机器学习和人工智能知识
  • 数据分析与可视化
  • 实验
  • 多模态数据
  • 性能优化
  • 软件开发与工程
  • 可信赖的人工智能

适用人群

  • AI DevOps 工程师
  • AI策略师
  • 应用数据研究工程师
  • 应用数据科学家
  • 应用深度学习研究科学家
  • 云解决方案架构师
  • 数据科学家
  • 深度学习性能工程师
  • 生成式 AI 专家
  • 大语言模型(LLM)专家和研究人员
  • 机器学习工程师
  • 高级研究人员
  • 软件工程师
  • 解决方案架构师

考前学习指南

查看学习指南,详细了解考试所涵盖的各项技术主题的介绍和权重,以及考点相关的培训课程和阅读资料。

考试相关培训

根据考试涵盖的各项技术,您可以选择学习相关的 NVIDIA 培训课程,以更加充分地准备考试

推荐培训课程
培训形式 | 培训时长 | 语言 | 费用
课程详情 25%
实验
20%
核心机器学习和人工智能知识
15%
多模态数据
15%
软件开发
10%
数据分析与可视化
10%
性能优化
5%
可信 AI

生成式 AI 入门
在线自主培训 | 2 学时 | 中文 | 免费

您可任选一门:
深度学习新手入门
在线自主培训 | 8 学时 | 中文 | 90 美元

深度学习基础——理论与实践入门
讲师指导的培训班 | 8 学时 | 中文 | 500 美元





加速端到端的数据科学工作流
在线自主培训 | 6 学时 | 英文 | 90 美元

构建基于深度学习的工业检测应用
讲师指导的培训班 | 8 学时 | 中文 | 500 美元

基于 Transformer 的自然语言处理入门
在线自主培训 | 6 学时 | 英文 | 30 美元

您可任选一门:
生成式 AI —— 基于扩散模型的图像生成
在线自主培训 | 8 学时 | 英文 | 90 美元

构建基于扩散模型的生成式 AI 应用
讲师指导的培训班 | 8 学时 | 中文 | 500 美元





构建基于大语言模型 (LLM) 的应用
讲师指导的培训班 | 8 学时 | 中文 | 500 美元

高效定制大语言模型 (LLM)
讲师指导的培训班 | 8 学时 | 中文 | 500 美元

为大规模推理部署模型
在线自主培训 | 4 学时 | 中文 | 30 美元

更多资源

联系我们

NVIDIA提供培训和 AI 专业认证,助力专业人士提升在生成式 AI与大语言模型、深度学习、加速计算、数据科学、图形与仿真等领域的技能和知识。

咨询 NVIDIA 培训和认证,请将需求详情发邮件至 dlichina@nvidia.com

订阅 NVIDIA 培训最新消息

想要获取最新的 DLI 课程、培训班或优惠活动,请填写如下表格。 请了解,您也可以随时取消此订阅。请收藏 DLI 中文官网 nvidia.cn/training,以便随时查看或学习课程。

Generative AI Explained

Skills covered in this course:

Core Machine Learning and AI Knowledge

  • Define generative AI and explain how it works. ​
  • Describe various generative AI applications. ​
  • Explain the challenges and opportunities in generative AI.

You can take one of these courses:

Getting Started With Deep Learning
Fundamentals of Deep Learning

Skills covered in these courses:

Experimentation

  • Enhance datasets through data augmentation to improve model accuracy.

Core Machine Learning and AI Knowledge​

  • Understand the fundamental techniques and tools required to train a deep learning model.

Software Development

  • Gain experience with common deep learning data types and model architectures. 
  • Leverage transfer learning between models to achieve efficient results with less data and computation. 
  • Take on your own project with a modern deep learning framework.

You can take one of these courses:

​Accelerating End-to-End Data Science Workflows
Fundamentals of Accelerated Data Science

Skills covered in these courses:

Software​ Development

  • Implement GPU-accelerated data preparation and feature extraction using cuDF and Apache Arrow data frames​.
  • Apply a broad spectrum of GPU-accelerated machine learning tasks using XGBoost and a variety of cuML algorithms.​
  • Execute GPU-accelerated graph analysis with cuGraph, achieving massive-scale analytics in small amounts of time.​
  • Rapidly achieve massive-scale graph analytics using cuGraph routines.

Building Conversational​ AI Applications

Skills covered in this course:

Experimentation

  • Customize and deploy automatic speech recognition (ASR) and test-to-speech (TTS) models on NVIDIA® Riva.​
  • Build and deploy an end-to-end conversational AI pipeline, including ASR, natural language processing (NLP), and TTS models, on Riva.​
  • Deploy a production-level conversational AI application with a Helm chart for scaling in Kubernetes clusters.

​​Multimodal Data

  • Customize and deploy ASR and TTS models on Riva.​
  • Build and deploy an end-to-end conversational AI pipeline, including ASR, NLP, and TTS models, on Riva.

Computer Vision for ​Industrial Inspection

Skills covered in this course:

Performance​ Optimization​

  • Extract meaningful insights from the provided dataset using pandas DataFrame.​
  • Apply transfer learning to a deep learning classification model.​
  • Fine-tune the deep learning model and set up evaluation metrics.​
  • Deploy and measure model performance.​
  • Experiment with various inference configurations to optimize model performance.

Applications of AI for ​Anomaly Detection

Skills covered in this course:

Multimodal Data

  • Prepare data and build, train, and evaluate models using XGBoost, autoencoders, and generative adversarial networks (GANs).​
  • Detect anomalies in datasets with both labeled and unlabeled data​.
  • Classify anomalies into multiple categories regardless of whether the original data was labeled.

Applications of AI for ​Predictive Maintenance

Skills covered in this course:

Multimodal Data

  • Use time-series data to predict outcomes with XGBoost-based machine learning classification models.​
  • Use anomaly detection with time-series autoencoders to predict failures when limited failure-example data is available.

Introduction to Transformer-Based Natural Language Processing

Skills covered in this course:

Experimentation

  • Understand how transformer-based LLMs can be used to manipulate, analyze, and generate text-based data.  
  • Leverage pretrained, modern LLMs to solve various natural language processing (NLP) tasks such as token classification, text classification, summarization, and question-answering.

Core Machine Learning and AI Knowledge​

  • Learn to describe how transformers are used as the basic building blocks of modern LLMs for NLP applications​.
  • Understand how transformer-based LLMs can be used to manipulate, analyze, and generate text-based data.

Software Development

  • Leverage pretrained, modern LLMs to solve various NLP tasks such as token classification, text classification, summarization, and question-answering.

Data Analysis​ and Visualization​

  • Understand how transformer-based LLMs can be used to manipulate, analyze, and generate text-based data.

Generative AI With Diffusion Models

Skills covered in this course:

Experimentation

  • Improve the quality of generated images with the denoising diffusion process.​
  • Control the image output with context embeddings. Test and refine the context embeddings to achieve the desired image output, which necessitate experimental approaches to optimize performance.

Multimodal Data

  • Generate images from English text-prompts using contrastive language-image pretraining (CLIP).

Software Development

  • Generate images from pure noise.​
  • Generate images from English text prompts using CLIP.

Trustworthy AI​

  • Understand content authenticity and how to build trustworthy models.

Rapid Application Development With ​Large Language Models (LLMs)

Skills covered in this course:

Experimentation

  • Find, pull in, and experiment with the Hugging Face model repository and the associated transformers API.​
  • Use encoder models for tasks like semantic analysis, embedding, question-answering, and zero-shot classification.​
  • Use decoder models to generate sequences like code, unbounded answers, and conversations.

Software Development

  • Find, pull in, and experiment with the Hugging Face model repository and the associated transformers API​.​
  • Use state management and composition techniques to guide LLMs for safe, effective, and accurate conversation.

Trustworthy AI​

  • Use state management and composition techniques to guide LLMs for safe, effective, and accurate conversation.

Efficient Large Language Model (LLM) Customization

Skills covered in this course:

Core Machine Learning and AI Knowledge​

  • Know how to apply fine-tuning techniques.
  • Understand how to effectively integrate and interpret diverse data types within a single model framework.

Multimodal Data

  • Use a single pretrained model to perform multiple custom tasks involving different types of data (e.g., text, images, audio).

Software Development

  • Leverage the NVIDIA NeMo™ framework to customize models like GPT, LLaMA-2, and Falcon with ease.

Data Analysis​ and Visualization​

  • Assess the performance of fine-tuned models.

Performance​ Optimization​

  • Use fine-tuning to perform optimization to enhance a model's accuracy, efficiency, or effectiveness for specific tasks.

Deploying a Model for Inference ​at Production Scale

Skills covered in this course:

Software Development

  • Deploy neural networks from a variety of frameworks onto a live NVIDIA Triton™ server.​
  • Measure GPU usage and other metrics with Prometheus.​
  • Send asynchronous requests to maximize throughput.

Performance​ Optimization​

  • Measure GPU usage and other metrics with Prometheus​.
  • Send asynchronous requests to maximize throughput.