Video Player is loading.
Current Time 0:00
Duration 56:55
Loaded: 0%
Stream Type LIVE
Remaining Time 56:55
 
1x
    • Chapters
    • descriptions off, selected
    • subtitles off, selected
    • default, selected

    Retrieval Augmented Generation: Overview of Design Systems, Data, and Customization

    , Senior Solutions Architect - GenAI&Inference, NVIDIA
    , Solutions Architect, NVIDIA
    , Sr. Deep Learning Data Scientist, NVIDIA
    , Sr. Deep Learning Data Scientist, NVIDIA
    , Solution Architect, NVIDIA
    高度评价
    Discover the potential of retrieval augmented generation (RAG) with NVIDIA technologies. RAG systems combine information retrieval and generative models by retrieving relevant document passages from a large corpus, and then use them as context for generating detailed answers. We'll cover the design of end-to-end RAG systems, including data preparation and retriever and generator models. We'll showcase an example of RAG system using NVIDIA TensorRT-LLM and NeMo. We'll cover RAG models evaluation and customization for specific tasks.
    活动: GTC 24
    日期: March 2024
    行业: 所有行业
    级别: 中级技术
    NVIDIA 技术: NeMo,TensorRT,Triton
    话题: Text Generation
    语言: 英语
    所在地: