Video Player is loading.
Current Time 0:00
Duration 0:00
Loaded: 0%
Stream Type LIVE
Remaining Time 0:00
 
1x
    • Chapters
    • descriptions off, selected
    • subtitles off, selected
      • Quality

      Retrieval Augmented Generation: Overview of Design Systems, Data, and Customization

      , Senior Solutions Architect - GenAI&Inference, NVIDIA
      , Solutions Architect, NVIDIA
      , Sr. Deep Learning Data Scientist, NVIDIA
      , Sr. Deep Learning Data Scientist, NVIDIA
      , Solution Architect, NVIDIA
      高度评价
      Discover the potential of retrieval augmented generation (RAG) with NVIDIA technologies. RAG systems combine information retrieval and generative models by retrieving relevant document passages from a large corpus, and then use them as context for generating detailed answers. We'll cover the design of end-to-end RAG systems, including data preparation and retriever and generator models. We'll showcase an example of RAG system using NVIDIA TensorRT-LLM and NeMo. We'll cover RAG models evaluation and customization for specific tasks.
      活动: GTC 24
      日期: March 2024
      行业: 所有行业
      级别: 中级技术
      NVIDIA 技术: NeMo,TensorRT,Triton
      话题: Text Generation
      语言: 英语
      所在地: