

WP-07313-001_v01| June 2014

White Paper

REMOTE VISUALIZATION ON
SERVER-CLASS TESLA GPUS

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| ii

 TABLE OF CONTENTS

Introduction ... 4

Challenges in Remote and In-Situ Visualization ... 5

GPU-Accelerated Remote Visualization System ... 6

General System Setup .. 6

Graphics Components .. 7

Graphics Middleware ... 7

Visualization software .. 8

Remote Visualization Applications ... 8

Generic OpenGL Applications .. 8

Integration of GPU-accelerated Viz into HPC Operations .. 13

Enabling GPU Graphics Operations ... 13

Setting up the X server for Headless Operation ... 15

Testing the Headless X Operation .. 17

Using Remote Visualization Capabilities ... 18

Setting Up Visualization Software with Remote Rendering Capabilities 18

Using Applications without Remote Rendering Capabilities - Configuring VirtualGL and TurboVNC . 19

Queuing system setup to launch X server ... 21

Prologue script ... 21

Epilogue script .. 21

Potential Pitfalls with the X Server Setup .. 22

Example: Running CUDA Samples Remotely ... 23

Conclusion .. 25

Appendix: Xserver Build Instructions on Cray XK/XC Systems 26

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| iii

LIST OF FIGURES

Figure 1: Typical Scientific Computing Setup .. 7

Figure 2: Components of an X application with local rendering .. 9

Figure 3: Remote rendering using X indirect rendering mode, also known as “X forwarding”. The dashed
line represents the network, separating the remote compute server (left) from the user’s
workstation (right). ... 10

Figure 4: Remote Rendering with Rendering Application. ... 11

Figure 5: Setup for Remote Visualization with Interposer Library. .. 12

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 4

INTRODUCTION

Current and future generation graphics processing unit (GPU)-accelerated

supercomputers enable numerical simulations of unprecedented fidelity and scale.

These models produce vast amounts of output data with sizes measured in petabytes

(and soon exabytes), requiring sophisticated analysis and visualization methods to

extract the relevant scientific information. Powerful tools are therefore required to

analyze and interactively visualize data sets without moving them over long distances.

Today, computational scientists often follow a post-processing workflow: During the

course of the simulation, raw data is written to disk, and at a later time, this data is read

back into a dedicated system for analysis and visualization. This workflow puts a huge

strain on the file system and requires a visualization system capable of dealing with

these massive data sets. In addition, this workflow doesn’t allow the user to adjust

parameters while the simulation progresses. Using the graphics capabilities of the GPUs

installed in the HPC system enables scientists to analyze and visualize the simulation

data while it progresses.

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 5

CHALLENGES IN REMOTE AND IN-SITU
VISUALIZATION

In the conventional scientific workflow, users run their models at a remote high-

performance computing (HPC) center, write their results to disk, and transfer those

results to a visualization platform for analysis. Historically, this approach made sense

for various reasons:

 The hardware of the compute platform was considerably different from the

visualization platform, thus two systems were necessary for the different tasks.

 The throughput discrepancy between computing hardware and the file system was

sufficiently small such that writing to disk was affordable.

 The demand on visualizations was sufficiently low so that high latency in the

visualization system was acceptable.

With an increasing amount of data being generated in simulations, and with

significantly more complex visualizations, this traditional workflow starts to show its

limitations. However, the widespread use of GPUs on the compute node of HPC

systems allows homogenizing the hardware between compute and visualization

systems, using the same hardware for both compute and visualization/analysis tasks.

This dual use of the compute node GPUs allows efficient “in-situ” processing of the

simulation data, enabling the analysis and visualization of the simulation data while the

simulation progresses. This not only reduces the dependency on the I/O subsystem, but

also enables new forms of interaction with the simulations like simulation steering.

This white paper describes tools and procedures for utilizing the GPU installed in HPC

systems for remote and in-situ visualization. Due to the diversity of HPC configurations,

the paper focuses on general concepts rather than detailed recipes. The audience for this

paper consists of system administrators responsible for HPC installations, scientific

software developers, visualization software developers, and decision makers

responsible for procurements related to HPC installations.

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 6

GPU-ACCELERATED REMOTE
VISUALIZATION SYSTEM

Remote and in-situ visualization consists of a range of different components, all working

closely together. In this chapter, we provide an overview of the different components

and provide some background on the necessity and contribution of each one.

GENERAL SYSTEM SETUP

In the following we will assume a general system setup as shown in Figure 1. The HPC

center is remote to the user, connected through a wide area network link. Rather than

getting direct access to the high performance computing resource, the user has to

connect through some gateway node. From there he connects to the head-node of the

HPC cluster. Rather than starting the jobs directly on the compute nodes, the user needs

to submit jobs through a queuing system from the head node.

GPU-Accelerated Remote Visualization System

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 7

Figure 1: Typical Scientific Computing Setup

Graphics Components

Here we assume that the workstation and the compute nodes are equipped with

NVIDIA® GPUs. The compute nodes are running server-class NVIDIA TeslaTM

computing solutions (for example, a Tesla K20X), whereas the user is running a

consumer-grade NVIDIA GeForce® GPU on a laptop.

In order to use the GPUs installed on the compute node for hardware-accelerated

OpenGL, the rendering features need to be turned on. OpenGL support has only

recently been added to the server-class GPUs. For Tesla K20X and K20 devices, OpenGL

support is an opt-in feature via the GPU Operation Mode. Details on setting the GPU

Operation Mode are provided below. On Tesla K40 and newer devices, OpenGL

capabilities are always enabled.

Graphics Middleware

Taking advantage of GPUs for rendering tasks is typically accomplished using OpenGL.

OpenGL is a state-based API and third party software is needed to manage the OpenGL

state, the so-called OpenGL context. At the time of this writing, the only software

capable of managing the OpenGL context is the server component of the X windowing

system - the so-called X server. Therefore, in order to utilize the GPUs in your HPC

cluster for visualization, each compute node needs to be running the X server

application.

GPU-Accelerated Remote Visualization System

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 8

VISUALIZATION SOFTWARE

A broad range of general purpose visualization tools and individual visualization

solutions have been developed over the past decades and many are still in use today.

Broadly speaking, two categories of tools can be distinguished, depending on whether

they are set up for distributed/remote visualization or not. In the following, we will first

describe the commonly used tools already set up for remote visualization, and then go

into details for tools that are not set up for remote visualization.

Remote Visualization Applications

Paraview and VisIt are among the most popular massively scalable open source

visualization tools. While they can be used stand-alone on a workstation, their main

power arises when used in a massively parallel, remote environment. In order to use

them in a remote setting, two main challenges need to be addressed:

 Accessing Paraview or VisIt through the different network layers

 Utilizing the GPU hardware on each node

All other aspects of parallel, remote rendering are taken care of by the tools which are

transparent to the user. Here we will focus primarily on enabling use of the GPU

hardware from within these applications. For accessing the tools through multiple

network layers and launching them through a queuing system, please refer to the

Paraview and VisIt web sites.

Generic OpenGL Applications

In case an application has not been designed for remote visualization, or if it assumes

that one of the nodes is able to connect to the user’s screen, some additional steps and

considerations are necessary for remote visualization.

GPU-Accelerated Remote Visualization System

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 9

Local Rendering

In order to understand the steps necessary to obtain hardware accelerated rendering on

remote nodes, it is illustrative to look at the individual components of an OpenGL

application. Figure 2 shows the basic components of such an application.

Figure 2: Components of an X application with local rendering

An X windowing system is set up in a client-server fashion, using various forms of inter-

process communication between the application and the graphics hardware. The GPU,

in this case with an attached monitor, is controlled by the GPU driver. The X server’s

responsibility is to manage the hardware resources and provide interfaces to the

applications. Interaction between the application and the X server is accomplished via

the Xlib library, encapsulating the details of the X protocol. If an application wants to

use OpenGL, it first queries the X server for creating an OpenGL context. Once the

context is available, OpenGL can talk directly to the GPU, bypassing the X server.

GPU-Accelerated Remote Visualization System

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 10

Remote Rendering with X Forwarding

The client-server architecture of the X system allows for a seamless extension to a remote

configuration. Figure 3 shows a typical scenario with X forwarding: When the

application tries to communicate with the X server, it will connect to the remote X server

running on the user’s desktop, rather than to a local X server. It is therefore not

necessary to run an X server on the remote node. In case an application tries to use

OpenGL features, it will again query the X server, now running on the remote machine,

for an OpenGL context. The OpenGL context provided to the application is therefore

one running on the user’s GPU. All OpenGL calls will therefore need to go through the

network, which can incur a significant performance penalty.

Figure 3: Remote rendering using X indirect rendering mode, also known
as “X forwarding”. The dashed line represents the network,
separating the remote compute server (left) from the user’s
workstation (right).

GPU-Accelerated Remote Visualization System

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 11

Remote Rendering with Rendering Application

The impact of remote X can be mitigated in some cases by using X compression

techniques, reducing the “chattiness” of the X protocol. For some applications this might

be sufficient to provide a reasonably responsive user experience. However, for highly

demanding visualizations, this approach is not sufficiently powerful. In addition, X

compression approaches (like NoMachine’s NX) do not take advantage of the remote

GPU.

Figure 4: Remote Rendering with Rendering Application.

In order to overcome the low performance of transferring X across the network,

rendering on the remote node must be enabled. Figure 4 shows the configuration with a

remote visualization application. The application communicates with the X server on the

compute node via Xlib. OpenGL contexts, windowing and user interaction are all

accomplished by the X server on the compute node. The application on the compute

node is in full control, when the rendered frames are captured from the local GPU and

transported to the application client running on the user’s workstation. Given that the

visualization application is in full control of both the client and server side, compression

protocols and the like can be implemented, leading to a high-performance solution for

image transport. This is the situation described in the section “Remote Visualization ”.

GPU-Accelerated Remote Visualization System

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 12

Remote Visualization with Interposer Library

The previous configuration relied on the user’s application to capture the remotely

rendered frames and transport them to the end user’s workstation. In some cases,

however, the application’s architecture does not foresee any remote visualization

capabilities. But even in that case, the GPU installed on the remote compute node can be

used for rendering. The key technology in that case are so-called interposer libraries, for

example VirtualGL (www.virtualgl.org). Similar to the other cases, an X server needs to

be running on the compute node in order to manage the OpenGL context and the GPU’s

resources. And similar to the previous case, the application uses Xlib to communicate

with the X server, and once an OpenGL context is created the application can directly

use libGL to communicate with the GPU. However, all management operations are

routed through the VirtualGL library. This is accomplished by a so-called interposer

library, which is being loaded prior to the regular libGL library. The interposer library

inspects the individual OpenGL calls and either acts itself on those calls, or delegates to

the system libGL to perform the actual OpenGL operation.

This way, virtualGL knows whenever the application tries to draw the frame buffer to

the screen. But rather than drawing to the screen, it captures the buffer content and

continues to process it. In the setup shown in Figure 5, VirtualGL hands the content off

to a second X server, a so-called Proxy X server, running on the compute node. This is a

typical setup for e.g. TurboVNC. In this case, the proxy X server manages compression

of the resulting content and transmits the buffer content to the end user. With this

configuration, very thin client applications can be used, as they don’t need to provide

any X server capabilities. All they need to do is display the compressed images and send

commands to the proxy X server, allowing even for web-based clients.

Figure 5: Setup for Remote Visualization with Interposer Library.

http://www.virtualgl.org/

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 13

INTEGRATION OF GPU-ACCELERATED VIZ
INTO HPC OPERATIONS

In the previous example we have described the individual components of a remote

visualization system, as well as described different visualization scenarios. In the

following, we present the individual steps necessary to make the components work

together as a visualization solution.

ENABLING GPU GRAPHICS OPERATIONS

NVIDIA GPUs feature dedicated hardware to perform graphics related operations. For

some devices, most notably the Tesla K20X and K20, these graphics capabilities can be

enabled on demand. On newer generation devices, starting with the Tesla K40, graphics

capabilities are always available.

The GPU Operation Mode (GOM) enables different features of the GPU to meet specific

user needs:

 0 - All_On

In this mode everything is enabled and running at full speed.

 1 - Compute

This mode is designed for running only compute tasks. Graphics operations are not

allowed.

 2 – Low DP (Low Double Precision)

This mode is designed for running graphics applications not requiring high

bandwidth double precision.

Integration of GPU-accelerated Viz into HPC Operations

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 14

The GPU Operation Mode is supported on GK110 M-class and X-class Tesla server

products such as the Tesla K20 and K20X from the Kepler family. It is not supported on

Quadro and Tesla C-class workstation products. The Tesla K40 has all modes turned on

by default. There is no need to switch to a special GPU Operation Mode.

With the GPU Operation Mode switched to “All_On”, all graphics operations supported

on Quadro GPUs are supported on Tesla GPUs, except for operations which need a

directly connected monitor.

In order to utilize Tesla GPUs for both compute and visualization, the “All On” GOM

must be turned on. The most convenient way to accomplish this is via the nvidia-smi

tool.

To query the state of the GPU Operation Mode of the GPUs in a system, use the

following nvidia-smi command:

nvidia-smi --query-gpu=gom.current --format=csv

The resulting states are either “All_on”, “Compute”, or “low DP”. The following is an

example nvidia-smi command output:

gom.current

Compute

In order to enable hardware-accelerated OpenGL, the GPU needs to be put into the “All

on” mode. This can be accomplished by the following command:

nvidia-smi –-gom=0

Changing the GPU operations mode requires root privileges and a system reboot. But

once a GPU Operations Mode has been set, it persists through system reboots. For

details, refer to the nvidia-smi help using the following command:

nvidia-smi –h

Switching the GPU Operations Mode to “All On” may lead to a slight increase in power

consumption, but generally in the percent range.

Integration of GPU-accelerated Viz into HPC Operations

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 15

SETTING UP THE X SERVER FOR HEADLESS

OPERATION

Taking advantage of a server-class Tesla GPU to accelerate OpenGL calls requires an X

server to manage the OpenGL contexts. In this section we describe how to configure the

X server for headless operation. This assumes that the X server binary, usually located at

/usr/bin/Xorg, is available on the system.

A broad range of tools and scripts exist to launch the X server on a particular Linux

configuration, usually at system startup time, ranging from the simple xinit and startx to

site-specific scripts.

Irrespective of the X server’s launch mechanism, the binary will parse at startup a

configuration file, by default called xorg.conf. This file describes the properties of the

individual components of the system.

The simplest mechanism to configure the X server for headless operation is to use the

nvidia-xconfig tool, shipped with the NVIDIA driver.

When run without any options,

nvidia-xconfig

the tool will look for an existing xorg.conf file and add the necessary options to take

advantage of installed GPUs to accelerate X.

Running with the “–query-gpu-info” option, nvidia-xconfig will print information about

all recognized NVIDIA GPUs in the system, including their ID on the PCIe bus.

nvidia-xconfig --query-gpu-info

Number of GPUs: 2

GPU #0:

 Name : Tesla K20Xm

 UUID : GPU-e792bc85-1fea-41a1-996e-825917e372cc

 PCI BusID : PCI:4:0:0

 Number of Display Devices: 0

GPU #1:

 Name : Tesla K20Xm

 UUID : GPU-06163e8f-1f0b-391e-4f8f-22a6c90941d3

 PCI BusID : PCI:5:0:0

 Number of Display Devices: 0

Integration of GPU-accelerated Viz into HPC Operations

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 16

The following command creates an entry for the GPU with the related PCI BusID into

the xorg.conf configuration file.

nvidia-xconfig --busid=PCI:4:0:0 --use-display-device=none

For details, refer to the nvidia-xconfig help,

nvidia-xconfig –h

The alternative approach is to provide a manually created xorg.conf file. The file

below shows the minimum configuration necessary for headless operation of a GPU:

Section "ServerFlags"

 Option "IgnoreABI" "True"

 Option "nolisten" "True"

 Option "AutoAddDevices" "False"

EndSection

Section "ServerLayout"

 Identifier "layout"

 Screen 0 "nvidia" 0 0

EndSection

Section "Device"

 Identifier "nvidia"

 Driver "nvidia"

 BusID "1:0:0"

EndSection

Section "Screen"

 Identifier "nvidia"

 Device "nvidia"

 Option "UseDisplayDevice" "none"

EndSection

The critical option is “UseDisplayDevice” “none” under the “Screens” section,

indicating the headless operation. The other relevant option is the bus ID under the

“Device” section, which indicates the PCIExpress bus ID for the GPU.

In some cases, when using hardware-accelerated remote visualization by VirtualGL in

combination with NVIDIA drivers under various Linux distributions, setting the

following “ConstantFrameRateHint” option under the “Devices” section leads to better

stability:

Option "ConstantFrameRateHint" "True"

Integration of GPU-accelerated Viz into HPC Operations

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 17

When launching the X server, it needs to have access to all the necessary modules and

libraries. In particular, make sure that the shared library search path includes the

location of the NVIDIA driver if they are not installed in a standard location. For

example, on a GPU-accelerated Cray system, you will likely need to include a path to

the libGL.so provided by the NVIDIA driver:

export LD_LIBRARY_PATH=/opt/cray/nvidia/default/lib64:$LD_LIBRARY_PATH

TESTING THE HEADLESS X OPERATION

In order to test the installation of the newly installed X server, it is advisable to run one

of the standard OpenGL tests. A particularly helpful one is glxgears. After launching

the X server on display :0, one can run the benchmark application via

export DISPLAY=:0

glxgears

No graphical output will be visible to the user, as rendering will be directed to display

:0. However, the application will start reporting the achieved framerate after a few

seconds. In case of a failed X installation, glxgears will abort with a “missing glx

extension” message or something similar. In those cases, kill your X server, set the

correct paths, and then inspect the shared libraries by issuing the following command:

ldd `which glxgears`

The relevant libraries libGL.so and libglx.so should be pulled from the NVIDIA driver

location.

Integration of GPU-accelerated Viz into HPC Operations

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 18

USING REMOTE VISUALIZATION CAPABILITIES

Once OpenGL is enabled on the GPUs and an X server is running, the GPUs installed on

the compute node can be used for accelerated rendering. The details of using the GPUs

for rendering depends on the visualization software. Here we focus on the two main

scenarios: Visualization software with built-in remote rendering capabilities and

OpenGL applications without remote rendering capabilities.

Setting Up Visualization Software with Remote
Rendering Capabilities

Scalable visualization applications such as Paraview or VisIt offer built-in capabilities for

parallel remote data reduction, rendering, and compositing. Both tools offer a client-

server architecture where the client runs on the user’s workstation and communicates

with the server running on a remote visualization cluster.

Using this remote visualization software therefore consists of two parts:

 Run a parallel server on the visualization cluster, taking advantage of the GPUs per

node

 Connect the client application to the server

Neither Paraview nor VisIt offer pre-built binaries for their parallel servers. It is

therefore necessary to build the packages from source.

 See http://www.paraview.org/Wiki/ParaView:Build_And_Install for build and

installation instructions for Paraview.

 See http://www.visitusers.org/index.php?title=ParallelPorting for build and

installation instructions for VisIt.

When building these tools, make sure the NVIDIA OpenGL libraries can be detected,

either by setting the LD_LIBRARY_PATH environment variables or by specifying their

location when configuring the code via cmake.

Once the parallel server is built, it can be run according to tools specific run instruction.

See http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server for an example

using Paraview.

http://www.paraview.org/Wiki/ParaView:Build_And_Install
http://www.visitusers.org/index.php?title=ParallelPorting
http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server

Integration of GPU-accelerated Viz into HPC Operations

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 19

Using Applications without Remote Rendering
Capabilities - Configuring VirtualGL and TurboVNC

Applications not designed for remote rendering often assume that the user has

interactive access to the X server. In the case of remote rendering, an extra software layer

is needed to transfer data between the user’s workstation and the GPU.

One of the possibilities is using an interposer library such as VirtualGL together with the

TurboVNC proxy X server. Properly configured, this setup will render the frames on the

compute node’s GPUs, and then transport them to the end user, with possible

compression.

In order to set up VirtualGL/TurboVNC on the compute nodes, the following steps are

necessary:

 X server running on the compute nodes, managing the GPU

 Proxy X server running on the compute node, responsible for capturing the rendered

frames

The TurboVNC proxy X server can run entirely in user space, and it can therefore be left

to the user to launch it. An alternative is to start the VNC server in the prologue script.

However, the proxy X server will need access to the X server managing the GPU, so it

has to be launched after the X server has started. In a typical scenario, with only a single

GPU attached to the device, the display of the proxy server can be arbitrarily set, for

example, to display :1. Subsequently, all rendering operations on that node should be

directed to display :1 in order to take advantage of the VirtualGL mechanism.

Xvnc :1 –fp /usr/share/fonts/misc &

export DISPLAY=:1

vglrun glxgears

Note the use of the vlgrun launcher script, which sets up the environment to load the

VirtualGL library, intercepting some of the OpenGL and GLX functions.

With the above example, the GPU on the compute node will be used for rendering, and

the rendered frames will be captured. In order to transfer the frames to the user’s

workstation, it is necessary to connect the VNC client to the server on the compute node.

In the simplest case, this can be accomplished by directly pointing the VNC client to the

port on the compute node:

vncviewer computeNode01:1

In most situations, the compute nodes are not directly visible to the remote user. In that

case it’s necessary to establish an SSH tunnel from the user’s workstation to the compute

node. For example, the following establishes a tunnel between the user’s workstation

(port 5903) and the HPC center’s gateway (port 5902), and then a tunnel from the

gateway to port 5901 on the compute node (established via the headnode)..

Integration of GPU-accelerated Viz into HPC Operations

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 20

ssh –L 5903:localhost:5902 gateway

ssh –L 5902:computenode01:5901 headnode

In this example, the user will be able to connect to the VNC server on the compute node

with a

vncviewer localhost:3

Note that in the above example we needed to establish the tunnel to the compute node.

This required knowledge of the node assigned to our allocation via the queuing system.

One possibility is to print out this information at simulation setup. An alternative

possibility is to establish the tunnel as part of the simulation startup.

Integration of GPU-accelerated Viz into HPC Operations

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 21

QUEUING SYSTEM SETUP TO LAUNCH X SERVER

Many HPC centers enforce a policy that does not allow compute node processes to

remain active between subsequent allocations. It is therefore advisable to start/stop an X

server for each allocation if selected by the user. In the following sections, we present

sample prologue/epilogue scripts for SLURM.

Prologue script

The following script allows the user to start the X server on demand when scheduling

the node allocation by specifying the option —-constraint startx, resp. the –C

startx option.

In this case, we assume a Cray based system, with the slurm prologue script located in
/opt/slurm/default/etc/prologslurmctld.sh

parse for the startx constraint

if [[$SLURM_JOB_CONSTRAINTS =~ .*startx.*]] then

convert nodelist provided by SLURM to nodlelist useful to

 # the parallel remote control launcher, pcmd.

 NODELIST=`echo $SLURM_JOB_NODELIST | sed 's/^nid.*\[//'| \

 sed 's/\]//'`

 cd /

launch the Xsever on all the nodes.

 /opt/cray/nodehealth/default/bin/pcmd -u 2 -r -s -n $NODELIST

 "/opt/xserver/usr/bin/Xorg :0 &">/tmp/startx_log.txt

wait a bit to ensure X is up before moving forward

 sleep 2

end

The above script enables the user to launch e.g. a 10 node job, with an X server running

on each node by:

salloc –n 10 –C startx

Epilogue script

Upon completion of a node’s allocation, the X server needs to be terminated. This can be

accomplished with the following epilogue script. On a Cray system, a typical slurm

epilogue script at /opt/slurm/default/etc/epilogslurmctld.sh would be

Kill Xorg

NODELIST=`echo $SLURM_JOB_NODELIST | sed 's/^nid.*\[//' | sed 's/\]//'`

/opt/cray/nodehealth/default/bin/pcmd -r -s -n $NODELIST

"/dsl/root/bin/killme &"

Integration of GPU-accelerated Viz into HPC Operations

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 22

POTENTIAL PITFALLS WITH THE X SERVER SETUP

In a cluster environment, it may seem reasonable to install the X server on a file system

shared across all the nodes in the cluster. While this makes perfect sense from a space

conservation point of view, the several files usually installed in the X tree are modified

by the X server itself. Storing those files in a shared location can lead to race conditions

between the multiple X servers. In particular, compiled keymap files, usually stored in

/usr/X11R6/xkb/compiled/server-0.xkm

and the server log files, usually stored in

/usr/var/log

must be stored in a node-local directory. This can be accomplished by either specifying

an output directory on the command line, or alternately by soft-mounting the

corresponding directories to node-local file systems (e.g. /tmp).

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 23

EXAMPLE: RUNNING CUDA SAMPLES
REMOTELY

In this section we give step-by-step instructions for running one of the CUDA samples

with graphics output on a remote system. We assume a system that is set up similar to

Figure 1 - A client with a workstation, a remote HPC system with a gateway server, and

an attached GPU-accelerated HPC system.

1. Log onto the remote system.

We assume that compilation needs to occur on the head node of the cluster, rather

than on the gateway node. The user therefore has to first connect from the

workstation to the gateway:

ssh gateway

and then from the gateway to the cluster’s head node:

ssh headnode

Note that no X forwarding is necessary.

2. Compile the sample code.

Obtain the sample code from the NVIDIA web site. When configuring the code,

make sure it picks up the OpenGL library, libGL.so, distributed with the NVIDIA

driver.

3. Launch X server on compute node if not already running.

Make sure the X server is running on the compute node and that it picks up the

configuration for headless operation. In a typical environment, the X server should

be launched by the resource management system.

Example: Running CUDA Samples Remotely

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 24

4. Launch TurboVNC on compute node.

Similar to the X server managing the compute nodes’ GPU, the TurboVNC proxy X

server should be launched by the resource management system. In a typical HPC

environment where compute nodes are not shared amongst multiple users, it is safe

to assign one specific display to the VNC server. Here we will assume TurboVNC is

in charge of display :1, so that it is listening for connections on port 5901.

5. Establish tunnel to compute node.

See the section Using Applications without Remote Rendering Capabilities for

examples on establishing a tunnel from your workstation to port 5901 on the

compute node.

6. Connect client to compute node.

At this point, you can connect the TurboVNC client on your workstation to the

proxy X server running on the compute node.

7. Run CUDA sample application.

On the compute node, launch the OpenGL application using vglrun. Make sure the

application uses display :1 for the output in order to get the data through VNC.

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 25

CONCLUSION

The conventional scientific computing workflow involves running simulations at a

remote HPC center, writing results to a file system and then analyzing and visualizing

them in a post-processing manner. With increasing amounts of data generated by the

simulations and with increasingly complex analysis algorithms, this approach becomes

intractable and new ways for processing the simulation data need to be found.

The widespread use of GPUs on the compute nodes of HPC systems allows not only

accelerated simulations, but also use of the GPU’s graphics legacy for visualization and

analysis tasks. The dual use of the GPUs in the compute nodes allows for in-situ

processing of the simulation data and enables scientific visualizations while the

simulation progresses. This results in a simplified workflow, reduced dependency on

the HPC center’s file system, and an overall shortened path to scientific discovery.

Further Reading

Many of the topics described here are highly site specific and the recipes are meant as

general guidelines. The following pointers can help to obtain more detailed information

to adjust for a specific center’s needs.

 Nvidia-smi: https://developer.nvidia.com/nvidia-system-management-interface

 X server: http://www.x.org/wiki/XServer/

 VirtualGL: http://www.virtualgl.org

 TurboVNC: http://www.turbovnc.org

 SSH tunneling: ssh man page

https://developer.nvidia.com/nvidia-system-management-interface
http://www.x.org/wiki/XServer/
http://www.virtualgl.org/
http://www.turbovnc.org/

Remote Visualization on Server-Class Tesla GPUs WP-07313-001_v01| 26

APPENDIX: XSERVER BUILD INSTRUCTIONS
ON CRAY XK/XC SYSTEMS

Some systems, most notable the Cray XC/XK series, do not come with a pre-installed

build of the X server. Building and installing this server is left to the user.

In order to build the X server from scratch, a build script can be requested from NVIDIA

by sending an email to hpcviz@nvidia.com.

mailto:hpcviz@nvidia.com

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

NVIDIA reserves the right to make corrections, modifications, enhancements, improvements, and other
changes to this specification, at any time and/or to discontinue any product or service without notice.
Customer should obtain the latest relevant specification before placing orders and should verify that such
information is current and complete.

NVIDIA products are sold subject to the NVIDIA standard terms and conditions of sale supplied at the time of
order acknowledgement, unless otherwise agreed in an individual sales agreement signed by authorized
representatives of NVIDIA and customer. NVIDIA hereby expressly objects to applying any customer general
terms and conditions with regard to the purchase of the NVIDIA product referenced in this specification.

NVIDIA products are not designed, authorized or warranted to be suitable for use in medical, military,
aircraft, space or life support equipment, nor in applications where failure or malfunction of the NVIDIA
product can reasonably be expected to result in personal injury, death or property or environmental damage.
NVIDIA accepts no liability for inclusion and/or use of NVIDIA products in such equipment or applications and
therefore such inclusion and/or use is at customer’s own risk.

NVIDIA makes no representation or warranty that products based on these specifications will be suitable for
any specified use without further testing or modification. Testing of all parameters of each product is not
necessarily performed by NVIDIA. It is customer’s sole responsibility to ensure the product is suitable and fit
for the application planned by customer and to do the necessary testing for the application in order to avoid
a default of the application or the product. Weaknesses in customer’s product designs may affect the quality
and reliability of the NVIDIA product and may result in additional or different conditions and/or requirements
beyond those contained in this specification. NVIDIA does not accept any liability related to any default,
damage, costs or problem which may be based on or attributable to: (i) the use of the NVIDIA product in any
manner that is contrary to this specification, or (ii) customer product designs.

No license, either expressed or implied, is granted under any NVIDIA patent right, copyright, or other NVIDIA
intellectual property right under this specification. Information published by NVIDIA regarding third-party
products or services does not constitute a license from NVIDIA to use such products or services or a warranty
or endorsement thereof. Use of such information may require a license from a third party under the patents
or other intellectual property rights of the third party, or a license from NVIDIA under the patents or other
intellectual property rights of NVIDIA. Reproduction of information in this specification is permissible only if
reproduction is approved by NVIDIA in writing, is reproduced without alteration, and is accompanied by all
associated conditions, limitations, and notices.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, and Tesla are trademarks and/or registered trademarks of NVIDIA
Corporation in the U.S. and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright

© 2014 NVIDIA Corporation. All rights reserved.

WP-07313-001_v01

	Introduction
	Challenges in Remote and In-Situ Visualization
	GPU-Accelerated Remote Visualization System
	General System Setup
	Graphics Components
	Graphics Middleware

	Visualization software
	Remote Visualization Applications
	Generic OpenGL Applications
	Local Rendering
	Remote Rendering with X Forwarding
	Remote Rendering with Rendering Application
	Remote Visualization with Interposer Library

	Integration of GPU-accelerated Viz into HPC Operations
	Enabling GPU Graphics Operations
	Setting up the X server for Headless Operation
	Testing the Headless X Operation
	Using Remote Visualization Capabilities
	Setting Up Visualization Software with Remote Rendering Capabilities
	Using Applications without Remote Rendering Capabilities - Configuring VirtualGL and TurboVNC

	Queuing system setup to launch X server
	Prologue script
	Epilogue script

	Potential Pitfalls with the X Server Setup

	Example: Running CUDA Samples Remotely
	Conclusion
	Further Reading

	Appendix: Xserver Build Instructions on Cray XK/XC Systems

