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INTRODUCTION 

Current and future generation graphics processing unit (GPU)-accelerated 

supercomputers enable numerical simulations of unprecedented fidelity and scale. 

These models produce vast amounts of output data with sizes measured in petabytes 

(and soon exabytes), requiring sophisticated analysis and visualization methods to 

extract the relevant scientific information. Powerful tools are therefore required to 

analyze and interactively visualize data sets without moving them over long distances.  

Today, computational scientists often follow a post-processing workflow: During the 

course of the simulation, raw data is written to disk, and at a later time, this data is read 

back into a dedicated system for analysis and visualization. This workflow puts a huge 

strain on the file system and requires a visualization system capable of dealing with 

these massive data sets. In addition, this workflow doesn’t allow the user to adjust 

parameters while the simulation progresses. Using the graphics capabilities of the GPUs 

installed in the HPC system enables scientists to analyze and visualize the simulation 

data while it progresses. 
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CHALLENGES IN REMOTE AND IN-SITU 
VISUALIZATION 

In the conventional scientific workflow, users run their models at a remote high-

performance computing (HPC) center, write their results to disk, and transfer those 

results to a visualization platform for analysis. Historically, this approach made sense 

for various reasons:  

 The hardware of the compute platform was considerably different from the 

visualization platform, thus two systems were necessary for the different tasks. 

 The throughput discrepancy between computing hardware and the file system was 

sufficiently small such that writing to disk was affordable. 

 The demand on visualizations was sufficiently low so that high latency in the 

visualization system was acceptable. 

With an increasing amount of data being generated in simulations, and with 

significantly more complex visualizations, this traditional workflow starts to show its 

limitations. However, the widespread use of GPUs on the compute node of HPC 

systems allows homogenizing the hardware between compute and visualization 

systems, using the same hardware for both compute and visualization/analysis tasks. 

This dual use of the compute node GPUs allows efficient “in-situ” processing of the 

simulation data, enabling the analysis and visualization of the simulation data while the 

simulation progresses. This not only reduces the dependency on the I/O subsystem, but 

also enables new forms of interaction with the simulations like simulation steering.  

This white paper describes tools and procedures for utilizing the GPU installed in HPC 

systems for remote and in-situ visualization. Due to the diversity of HPC configurations, 

the paper focuses on general concepts rather than detailed recipes. The audience for this 

paper consists of system administrators responsible for HPC installations, scientific 

software developers, visualization software developers, and decision makers 

responsible for procurements related to HPC installations.  
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GPU-ACCELERATED REMOTE 
VISUALIZATION SYSTEM  

Remote and in-situ visualization consists of a range of different components, all working 

closely together. In this chapter, we provide an overview of the different components 

and provide some background on the necessity and contribution of each one.  

GENERAL SYSTEM SETUP 

In the following we will assume a general system setup as shown in Figure 1. The HPC 

center is remote to the user, connected through a wide area network link. Rather than 

getting direct access to the high performance computing resource, the user has to 

connect through some gateway node. From there he connects to the head-node of the 

HPC cluster. Rather than starting the jobs directly on the compute nodes, the user needs 

to submit jobs through a queuing system from the head node.  
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Figure 1: Typical Scientific Computing Setup 

 

Graphics Components 

Here we assume that the workstation and the compute nodes are equipped with 

NVIDIA® GPUs. The compute nodes are running server-class NVIDIA TeslaTM 

computing solutions (for example, a Tesla K20X), whereas the user is running a 

consumer-grade NVIDIA GeForce® GPU on a laptop. 

In order to use the GPUs installed on the compute node for hardware-accelerated 

OpenGL, the rendering features need to be turned on. OpenGL support has only 

recently been added to the server-class GPUs. For Tesla K20X and K20 devices, OpenGL 

support is an opt-in feature via the GPU Operation Mode. Details on setting the GPU 

Operation Mode are provided below. On Tesla K40 and newer devices, OpenGL 

capabilities are always enabled.  

Graphics Middleware  

Taking advantage of GPUs for rendering tasks is typically accomplished using OpenGL. 

OpenGL is a state-based API and third party software is needed to manage the OpenGL 

state, the so-called OpenGL context. At the time of this writing, the only software 

capable of managing the OpenGL context is the server component of the X windowing 

system - the so-called X server. Therefore, in order to utilize the GPUs in your HPC 

cluster for visualization, each compute node needs to be running the X server 

application.  
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VISUALIZATION SOFTWARE 

A broad range of general purpose visualization tools and individual visualization 

solutions have been developed over the past decades and many are still in use today. 

Broadly speaking, two categories of tools can be distinguished, depending on whether 

they are set up for distributed/remote visualization or not. In the following, we will first 

describe the commonly used tools already set up for remote visualization, and then go 

into details for tools that are not set up for remote visualization. 

Remote Visualization Applications 

Paraview and VisIt are among the most popular massively scalable open source 

visualization tools. While they can be used stand-alone on a workstation, their main 

power arises when used in a massively parallel, remote environment. In order to use 

them in a remote setting, two main challenges need to be addressed:  

 Accessing Paraview or VisIt through the different network layers 

 Utilizing the GPU hardware on each node 

All other aspects of parallel, remote rendering are taken care of by the tools which are 

transparent to the user. Here we will focus primarily on enabling use of the GPU 

hardware from within these applications. For accessing the tools through multiple 

network layers and launching them through a queuing system, please refer to the 

Paraview and VisIt web sites. 

Generic OpenGL Applications 

In case an application has not been designed for remote visualization, or if it assumes 

that one of the nodes is able to connect to the user’s screen, some additional steps and 

considerations are necessary for remote visualization.  
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Local Rendering 

In order to understand the steps necessary to obtain hardware accelerated rendering on 

remote nodes, it is illustrative to look at the individual components of an OpenGL 

application. Figure 2 shows the basic components of such an application. 

 

 

Figure 2: Components of an X application with local rendering 

An X windowing system is set up in a client-server fashion, using various forms of inter-

process communication between the application and the graphics hardware. The GPU, 

in this case with an attached monitor, is controlled by the GPU driver. The X server’s 

responsibility is to manage the hardware resources and provide interfaces to the 

applications. Interaction between the application and the X server is accomplished via 

the Xlib library, encapsulating the details of the X protocol. If an application wants to 

use OpenGL, it first queries the X server for creating an OpenGL context. Once the 

context is available, OpenGL can talk directly to the GPU, bypassing the X server. 
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Remote Rendering with X Forwarding 

The client-server architecture of the X system allows for a seamless extension to a remote 

configuration. Figure 3 shows a typical scenario with X forwarding: When the 

application tries to communicate with the X server, it will connect to the remote X server 

running on the user’s desktop, rather than to a local X server. It is therefore not 

necessary to run an X server on the remote node. In case an application tries to use 

OpenGL features, it will again query the X server, now running on the remote machine, 

for an OpenGL context. The OpenGL context provided to the application is therefore 

one running on the user’s GPU. All OpenGL calls will therefore need to go through the 

network, which can incur a significant performance penalty. 

  

 

Figure 3: Remote rendering using X indirect rendering mode, also known 
as “X forwarding”. The dashed line represents the network, 
separating the remote compute server (left) from the user’s 
workstation (right).  
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Remote Rendering with Rendering Application 

The impact of remote X can be mitigated in some cases by using X compression 

techniques, reducing the “chattiness” of the X protocol. For some applications this might 

be sufficient to provide a reasonably responsive user experience. However, for highly 

demanding visualizations, this approach is not sufficiently powerful. In addition, X 

compression approaches (like NoMachine’s NX) do not take advantage of the remote 

GPU. 

 

 

Figure 4: Remote Rendering with Rendering Application. 

In order to overcome the low performance of transferring X across the network, 

rendering on the remote node must be enabled. Figure 4 shows the configuration with a 

remote visualization application. The application communicates with the X server on the 

compute node via Xlib. OpenGL contexts, windowing and user interaction are all 

accomplished by the X server on the compute node. The application on the compute 

node is in full control, when the rendered frames are captured from the local GPU and 

transported to the application client running on the user’s workstation. Given that the 

visualization application is in full control of both the client and server side, compression 

protocols and the like can be implemented, leading to a high-performance solution for 

image transport. This is the situation described in the section “Remote Visualization ”. 

  



GPU-Accelerated Remote Visualization System 

Remote Visualization on Server-Class Tesla GPUs  WP-07313-001_v01|  12 

Remote Visualization with Interposer Library 

The previous configuration relied on the user’s application to capture the remotely 

rendered frames and transport them to the end user’s workstation. In some cases, 

however, the application’s architecture does not foresee any remote visualization 

capabilities. But even in that case, the GPU installed on the remote compute node can be 

used for rendering. The key technology in that case are so-called interposer libraries, for 

example VirtualGL (www.virtualgl.org). Similar to the other cases, an X server needs to 

be running on the compute node in order to manage the OpenGL context and the GPU’s 

resources. And similar to the previous case, the application uses Xlib to communicate 

with the X server, and once an OpenGL context is created the application can directly 

use libGL to communicate with the GPU. However, all management operations are 

routed through the VirtualGL library. This is accomplished by a so-called interposer 

library, which is being loaded prior to the regular libGL library. The interposer library 

inspects the individual OpenGL calls and either acts itself on those calls, or delegates to 

the system libGL to perform the actual OpenGL operation. 

This way, virtualGL knows whenever the application tries to draw the frame buffer to 

the screen. But rather than drawing to the screen, it captures the buffer content and 

continues to process it. In the setup shown in Figure 5, VirtualGL hands the content off 

to a second X server, a so-called Proxy X server, running on the compute node. This is a 

typical setup for e.g. TurboVNC. In this case, the proxy X server manages compression 

of the resulting content and transmits the buffer content to the end user. With this 

configuration, very thin client applications can be used, as they don’t need to provide 

any X server capabilities. All they need to do is display the compressed images and send 

commands to the proxy X server, allowing even for web-based clients. 

 

 

Figure 5: Setup for Remote Visualization with Interposer Library. 

 

http://www.virtualgl.org/
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INTEGRATION OF GPU-ACCELERATED VIZ 
INTO HPC OPERATIONS 

In the previous example we have described the individual components of a remote 

visualization system, as well as described different visualization scenarios. In the 

following, we present the individual steps necessary to make the components work 

together as a visualization solution.  

ENABLING GPU GRAPHICS OPERATIONS 

NVIDIA GPUs feature dedicated hardware to perform graphics related operations. For 

some devices, most notably the Tesla K20X and K20, these graphics capabilities can be 

enabled on demand. On newer generation devices, starting with the Tesla K40, graphics 

capabilities are always available.  

The GPU Operation Mode (GOM) enables different features of the GPU to meet specific 

user needs: 

 0 - All_On    

In this mode everything is enabled and running at full speed. 

 1 - Compute  

This mode is designed for running only compute tasks. Graphics operations are not 

allowed. 

 2 – Low DP (Low Double Precision)  

This mode is designed for running graphics applications not requiring high 

bandwidth double precision. 
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The GPU Operation Mode is supported on GK110 M-class and X-class Tesla server 

products such as the Tesla K20 and K20X from the Kepler family. It is not supported on 

Quadro and Tesla C-class workstation products. The Tesla K40 has all modes turned on 

by default. There is no need to switch to a special GPU Operation Mode.  

With the GPU Operation Mode switched to “All_On”, all graphics operations supported 

on Quadro GPUs are supported on Tesla GPUs, except for operations which need a 

directly connected monitor.  

In order to utilize Tesla GPUs for both compute and visualization, the “All On” GOM 

must be turned on. The most convenient way to accomplish this is via the nvidia-smi 

tool.  

To query the state of the GPU Operation Mode of the GPUs in a system, use the 

following nvidia-smi command: 

nvidia-smi --query-gpu=gom.current --format=csv 

 

The resulting states are either “All_on”, “Compute”, or “low DP”. The following is an 

example nvidia-smi command output: 

gom.current 

Compute 

 

In order to enable hardware-accelerated OpenGL, the GPU needs to be put into the “All 

on” mode. This can be accomplished by the following command: 

nvidia-smi –-gom=0 

 

Changing the GPU operations mode requires root privileges and a system reboot. But 

once a GPU Operations Mode has been set, it persists through system reboots. For 

details, refer to the nvidia-smi help using the following command:  

nvidia-smi –h 

 

Switching the GPU Operations Mode to “All On” may lead to a slight increase in power 

consumption, but generally in the percent range.  
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SETTING UP THE X SERVER FOR HEADLESS 

OPERATION 

Taking advantage of a server-class Tesla GPU to accelerate OpenGL calls requires an X 

server to manage the OpenGL contexts. In this section we describe how to configure the 

X server for headless operation. This assumes that the X server binary, usually located at 

/usr/bin/Xorg, is available on the system.  

A broad range of tools and scripts exist to launch the X server on a particular Linux 

configuration, usually at system startup time, ranging from the simple xinit and startx to 

site-specific scripts.  

Irrespective of the X server’s launch mechanism, the binary will parse at startup a 

configuration file, by default called xorg.conf. This file describes the properties of the 

individual components of the system.  

The simplest mechanism to configure the X server for headless operation is to use the 

nvidia-xconfig tool, shipped with the NVIDIA driver.  

When run without any options,  

nvidia-xconfig 

the tool will look for an existing xorg.conf file and add the necessary options to take 

advantage of installed GPUs to accelerate X.  

Running with the “–query-gpu-info” option, nvidia-xconfig will print information about 

all recognized NVIDIA GPUs in the system, including their ID on the PCIe bus.  

nvidia-xconfig --query-gpu-info 

 

Number of GPUs: 2 

 

GPU #0: 

  Name      : Tesla K20Xm 

  UUID      : GPU-e792bc85-1fea-41a1-996e-825917e372cc 

  PCI BusID : PCI:4:0:0 

  Number of Display Devices: 0 

 

GPU #1: 

  Name      : Tesla K20Xm 

  UUID      : GPU-06163e8f-1f0b-391e-4f8f-22a6c90941d3 

  PCI BusID : PCI:5:0:0 

  Number of Display Devices: 0 
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The following command creates an entry for the GPU with the related PCI BusID into 

the  xorg.conf configuration file. 

nvidia-xconfig --busid=PCI:4:0:0 --use-display-device=none 

 

For details, refer to the nvidia-xconfig help,  

nvidia-xconfig –h 

 

The alternative approach is to provide a manually created xorg.conf file. The file 

below shows the minimum configuration necessary for headless operation of a GPU:  

Section "ServerFlags" 

 Option "IgnoreABI" "True" 

 Option "nolisten" "True" 

 Option "AutoAddDevices" "False"  

EndSection 

 

Section "ServerLayout" 

    Identifier     "layout" 

    Screen     0 "nvidia" 0 0 

EndSection 

 

Section "Device" 

    Identifier     "nvidia" 

    Driver         "nvidia" 

    BusID          "1:0:0" 

EndSection 

 

Section "Screen" 

    Identifier     "nvidia" 

    Device         "nvidia" 

    Option         "UseDisplayDevice" "none" 

EndSection 

 

The critical option is “UseDisplayDevice” “none” under the “Screens” section, 

indicating the headless operation. The other relevant option is the bus ID under the 

“Device” section, which indicates the PCIExpress bus ID for the GPU.  

In some cases, when using hardware-accelerated remote visualization by VirtualGL in 

combination with NVIDIA drivers under various Linux distributions, setting the 

following “ConstantFrameRateHint” option under the “Devices” section leads to better 

stability: 

Option "ConstantFrameRateHint" "True"   
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When launching the X server, it needs to have access to all the necessary modules and 

libraries. In particular, make sure that the shared library search path includes the 

location of the NVIDIA driver if they are not installed in a standard location. For 

example, on a GPU-accelerated Cray system, you will likely need to include a path to 

the libGL.so provided by the NVIDIA driver: 

export LD_LIBRARY_PATH=/opt/cray/nvidia/default/lib64:$LD_LIBRARY_PATH 

TESTING THE HEADLESS X OPERATION 

In order to test the installation of the newly installed X server, it is advisable to run one 

of the standard OpenGL tests. A particularly helpful one is glxgears. After launching 

the X server on display :0, one can run the benchmark application via 

export DISPLAY=:0 

glxgears  

No graphical output will be visible to the user, as rendering will be directed to display 

:0. However, the application will start reporting the achieved framerate after a few 

seconds. In case of a failed X installation, glxgears will abort with a “missing glx 

extension” message or something similar. In those cases, kill your X server, set the 

correct paths, and then inspect the shared libraries by issuing the following command: 

ldd `which glxgears` 

The relevant libraries libGL.so and libglx.so should be pulled from the NVIDIA driver 

location.  
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USING REMOTE VISUALIZATION CAPABILITIES 

Once OpenGL is enabled on the GPUs and an X server is running, the GPUs installed on 

the compute node can be used for accelerated rendering. The details of using the GPUs 

for rendering depends on the visualization software.  Here we focus on the two main 

scenarios: Visualization software with built-in remote rendering capabilities and 

OpenGL applications without remote rendering capabilities.  

Setting Up Visualization Software with Remote 
Rendering Capabilities 

Scalable visualization applications such as Paraview or VisIt offer built-in capabilities for 

parallel remote data reduction, rendering, and compositing. Both tools offer a client-

server architecture where the client runs on the user’s workstation and communicates 

with the server running on a remote visualization cluster.  

Using this remote visualization software therefore consists of two parts: 

 Run a parallel server on the visualization cluster, taking advantage of the GPUs per 

node 

 Connect the client application to the server 

Neither Paraview nor VisIt offer pre-built binaries for their parallel servers. It is 

therefore necessary to build the packages from source.  

 See http://www.paraview.org/Wiki/ParaView:Build_And_Install for build and 

installation instructions for Paraview. 

 See http://www.visitusers.org/index.php?title=ParallelPorting for build and 

installation instructions for VisIt. 

When building these tools, make sure the NVIDIA OpenGL libraries can be detected, 

either by setting the LD_LIBRARY_PATH environment variables or by specifying their 

location when configuring the code via cmake.  

Once the parallel server is built, it can be run according to tools specific run instruction. 

See http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server for an example 

using Paraview. 

  

http://www.paraview.org/Wiki/ParaView:Build_And_Install
http://www.visitusers.org/index.php?title=ParallelPorting
http://www.paraview.org/Wiki/Setting_up_a_ParaView_Server
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Using Applications without Remote Rendering 
Capabilities - Configuring VirtualGL and TurboVNC 

Applications not designed for remote rendering often assume that the user has 

interactive access to the X server. In the case of remote rendering, an extra software layer 

is needed to transfer data between the user’s workstation and the GPU.  

One of the possibilities is using an interposer library such as VirtualGL together with the 

TurboVNC proxy X server. Properly configured, this setup will render the frames on the 

compute node’s GPUs, and then transport them to the end user, with possible 

compression. 

In order to set up VirtualGL/TurboVNC on the compute nodes, the following steps are 

necessary: 

 X server running on the compute nodes, managing the GPU  

 Proxy X server running on the compute node, responsible for capturing the rendered 

frames 

The TurboVNC proxy X server can run entirely in user space, and it can therefore be left 

to the user to launch it. An alternative is to start the VNC server in the prologue script. 

However, the proxy X server will need access to the X server managing the GPU, so it 

has to be launched after the X server has started. In a typical scenario, with only a single 

GPU attached to the device, the display of the proxy server can be arbitrarily set, for 

example, to display :1. Subsequently, all rendering operations on that node should be 

directed to display :1 in order to take advantage of the VirtualGL mechanism.   

Xvnc :1 –fp /usr/share/fonts/misc & 

export DISPLAY=:1 

vglrun glxgears  

Note the use of the vlgrun launcher script, which sets up the environment to load the 

VirtualGL library, intercepting some of the OpenGL and GLX functions.  

With the above example, the GPU on the compute node will be used for rendering, and 

the rendered frames will be captured. In order to transfer the frames to the user’s 

workstation, it is necessary to connect the VNC client to the server on the compute node. 

In the simplest case, this can be accomplished by directly pointing the VNC client to the 

port on the compute node: 

vncviewer computeNode01:1 

In most situations, the compute nodes are not directly visible to the remote user. In that 

case it’s necessary to establish an SSH tunnel from the user’s workstation to the compute 

node. For example, the following establishes a tunnel between the user’s workstation 

(port 5903) and the HPC center’s gateway (port 5902), and then a tunnel from the 

gateway to port 5901 on the compute node (established via the headnode)..  
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ssh –L 5903:localhost:5902 gateway 

ssh –L 5902:computenode01:5901 headnode 

In this example, the user will be able to connect to the VNC server on the compute node 

with a  

vncviewer localhost:3 

Note that in the above example we needed to establish the tunnel to the compute node. 

This required knowledge of the node assigned to our allocation via the queuing system. 

One possibility is to print out this information at simulation setup. An alternative 

possibility is to establish the tunnel as part of the simulation startup.  
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QUEUING SYSTEM SETUP TO LAUNCH X SERVER 

Many HPC centers enforce a policy that does not allow compute node processes to 

remain active between subsequent allocations. It is therefore advisable to start/stop an X 

server for each allocation if selected by the user. In the following sections, we present 

sample prologue/epilogue scripts for SLURM.  

Prologue script 

The following script allows the user to start the X server on demand when scheduling 

the node allocation by specifying the option —-constraint startx, resp. the –C 

startx option. 

In this case, we assume a Cray based system, with the slurm prologue script located in 
/opt/slurm/default/etc/prologslurmctld.sh 

# parse for the startx constraint 

if [[ $SLURM_JOB_CONSTRAINTS =~ .*startx.* ]] then 

 

# convert nodelist provided by SLURM to nodlelist useful to  

 # the parallel remote control launcher, pcmd. 

      NODELIST=`echo $SLURM_JOB_NODELIST | sed 's/^nid.*\[//'| \ 

 sed 's/\]//'` 

       cd / 

# launch the Xsever on all the nodes.  

     /opt/cray/nodehealth/default/bin/pcmd -u 2 -r -s -n $NODELIST 

 "/opt/xserver/usr/bin/Xorg :0 &">/tmp/startx_log.txt 

# wait a bit to ensure X is up before moving forward 

      sleep 2 

end 

     

The above script enables the user to launch e.g. a 10 node job, with an X server running 

on each node by: 

salloc –n 10 –C startx 

 

Epilogue script 

Upon completion of a node’s allocation, the X server needs to be terminated. This can be 

accomplished with the following epilogue script. On a Cray system, a typical slurm 

epilogue script at /opt/slurm/default/etc/epilogslurmctld.sh would be 

 

# Kill Xorg 

NODELIST=`echo $SLURM_JOB_NODELIST | sed 's/^nid.*\[//' | sed 's/\]//'` 

/opt/cray/nodehealth/default/bin/pcmd -r -s -n $NODELIST 

"/dsl/root/bin/killme &" 
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POTENTIAL PITFALLS WITH THE X SERVER SETUP 

In a cluster environment, it may seem reasonable to install the X server on a file system 

shared across all the nodes in the cluster. While this makes perfect sense from a space 

conservation point of view, the several files usually installed in the X tree are modified 

by the X server itself. Storing those files in a shared location can lead to race conditions 

between the multiple X servers. In particular, compiled keymap files, usually stored in  

/usr/X11R6/xkb/compiled/server-0.xkm 

and the server log files, usually stored in  

/usr/var/log 

must be stored in a node-local directory. This can be accomplished by either specifying 

an output directory on the command line, or alternately by soft-mounting the 

corresponding directories to node-local file systems (e.g. /tmp). 
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EXAMPLE: RUNNING CUDA SAMPLES 
REMOTELY 

In this section we give step-by-step instructions for running one of the CUDA samples 

with graphics output on a remote system. We assume a system that is set up similar to 

Figure 1 - A client with a workstation, a remote HPC system with a gateway server, and 

an attached GPU-accelerated HPC system.  

1. Log onto the remote system.  

We assume that compilation needs to occur on the head node of the cluster, rather 

than on the gateway node. The user therefore has to first connect from the 

workstation to the gateway: 

ssh gateway  

 

and then from the gateway to the cluster’s head node:  

ssh headnode 

 

Note that no X forwarding is necessary.  

2. Compile the sample code. 

Obtain the sample code from the NVIDIA web site. When configuring the code, 

make sure it picks up the OpenGL library, libGL.so, distributed with the NVIDIA 

driver.  

3. Launch X server on compute node if not already running. 

Make sure the X server is running on the compute node and that it picks up the 

configuration for headless operation. In a typical environment, the X server should 

be launched by the resource management system.   
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4. Launch TurboVNC on compute node. 

Similar to the X server managing the compute nodes’ GPU, the TurboVNC proxy X 

server should be launched by the resource management system. In a typical HPC 

environment where compute nodes are not shared amongst multiple users, it is safe 

to assign one specific display to the VNC server. Here we will assume TurboVNC is 

in charge of display :1, so that it is listening for connections on port 5901.  

5. Establish tunnel to compute node. 

See the section Using Applications without Remote Rendering Capabilities for 

examples on establishing a tunnel from your workstation to port 5901 on the 

compute node.  

6. Connect client to compute node. 

At this point, you can connect the TurboVNC client on your workstation to the 

proxy X server running on the compute node.  

7. Run CUDA sample application. 

On the compute node, launch the OpenGL application using vglrun. Make sure the 

application uses display :1 for the output in order to get the data through VNC.  
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CONCLUSION 

The conventional scientific computing workflow involves running simulations at a 

remote HPC center, writing results to a file system and then analyzing and visualizing 

them in a post-processing manner. With increasing amounts of data generated by the 

simulations and with increasingly complex analysis algorithms, this approach becomes 

intractable and new ways for processing the simulation data need to be found.  

The widespread use of GPUs on the compute nodes of HPC systems allows not only 

accelerated simulations, but also use of the GPU’s graphics legacy for visualization and 

analysis tasks. The dual use of the GPUs in the compute nodes allows for in-situ 

processing of the simulation data and enables scientific visualizations while the 

simulation progresses. This results in a simplified workflow, reduced dependency on 

the HPC center’s file system, and an overall shortened path to scientific discovery. 

Further Reading 

Many of the topics described here are highly site specific and the recipes are meant as 

general guidelines. The following pointers can help to obtain more detailed information 

to adjust for a specific center’s needs. 

 Nvidia-smi: https://developer.nvidia.com/nvidia-system-management-interface 

 X server: http://www.x.org/wiki/XServer/ 

 VirtualGL: http://www.virtualgl.org 

 TurboVNC: http://www.turbovnc.org 

 SSH tunneling: ssh man page 

 

 

https://developer.nvidia.com/nvidia-system-management-interface
http://www.x.org/wiki/XServer/
http://www.virtualgl.org/
http://www.turbovnc.org/
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APPENDIX: XSERVER BUILD INSTRUCTIONS 
ON CRAY XK/XC SYSTEMS 

Some systems, most notable the Cray XC/XK series, do not come with a pre-installed 

build of the X server. Building and installing this server is left to the user.  

In order to build the X server from scratch, a build script can be requested from NVIDIA 

by sending an email to hpcviz@nvidia.com. 

 

 

 

mailto:hpcviz@nvidia.com
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